焦点期刊
在线客服

著作编辑 著作编辑

客服电话:

咨询邮箱:

医学领域论文

遗传学综述 遗传学教学的几点体会论文

作者:刚子seo 日期:2023-08-29 点击数:


大家好,关于遗传学综述 很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于遗传学教学的几点体会论文的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

单细胞综述之整合分析

文章发表于nature review genetics: Integrative single- cell analysis,作者是Tim Stuart与 Rahul Satija。做过单细胞分析的对他们应该不陌生。

scRNA-seq技术的发展契合了研究个体细胞表观遗传、空间研究、蛋白质组与谱系信息的方法需要,这为研究多类型数据的综合方法提出了独特的机遇与挑战。综合分析可以发现细胞之间的模式关系,获取细胞的整体状态信息,产生涵盖不同样本与不同研究手段的数据集。该文重点讨论了单细胞基因表达数据与其他类型的单细胞分析方法的整合。

多模态(Multimodal)数据:多种类型数据的组合,如RNA与蛋白质数据组合,是一种多维度数据,类似多组学。

单模态:单个类型数据

Pseudotime:拟时分析

联合聚类(Joint-clustering):通过联合不同类型数据对细胞进行分组。

典型相关分析(CCA):利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。

动态时间规整(Dynamic time warping):一种局部拉伸或压缩两个一维矢量以校正一个矢量相对于另一个矢量的滞后的方法。

MNNs:标准化基因表达空间中最临近的细胞。聚类用校正批次效应。

梯度推进(Gradient boosting):一种预测模型算法。

随着分子生物学、微流控与纳米技术的发展,催生了许多类型的单细胞测序技术。过去的方法集中在单模态测量上,如DNA序列、RNA表达量和染色质可及性上。虽然这些技术促进了我们对细胞多样性与发育景观的理解,但是它们并不能很好地解析单细胞内分子间互作关系。而这些互作关系是深入探索细胞状态的关键。随着可用数据集规模的快速增长,迫切需要用于标准化与联合分析且考量到批次效应与个体差异的计算方法。

scRNA-seq是应用最为广泛的单细胞测序技术之一。而后出现了一系列互补技术如单细胞基因组、表观基因组和蛋白质组分析技术,涵盖了单细胞基因组测序( Vitak, S. A. et al., 2017; Navin, N. et al., 2011)、染色质可及性( Pott, S., 2017; Corces, M. R. et al., 2016; Buenrostro, J. D. et al., 2015; Cusanovich, D. A. et al., 2015; Lake, B. B. et al., 2018)、DNA甲基化( Luo, C. et al., 2017; Smallwood, S. A. et al., 2014; Guo, H. et al., 2013; Mulqueen, R. M. et al., 2018)、膜蛋白( Stoeckius, M. et al., 2017; Peterson, V. M. et al., 2017)、小RNA( Faridani, O. R. et al., 2016)、组蛋白修饰( Gomez, D. te al., 2013; Rotem, A. et al., 2015)和染色体构象( Ramani, V. et al., 2017; Nagano, T. et al., 2013)等技术。目前已开发出研究单细胞空间结构和谱系信息的方法( Frieda, K. L. et al., 2017; Shah, S. et al., 2016)。

单细胞多模态综合分析方法示意



单模态与多模态分析方法汇总

CEL-seq:线性扩增测序法

CITE- seq:膜蛋白丰度与基因表达水平测定

G&T-seq:基因组转录组测序

LINNAEUS:谱系追踪

MARS-seq:大规模平行单细胞RNA测序

MEMOIR:谱系与空间结构测定

MERFISH:主要是细胞间结构测定

osmFISH:环状单分子荧光原位杂交,空间结构测定

REAP- seq:膜蛋白丰度与基因表达水平测定

scATAC-seq:单细胞空间结构测定

scBS-seq:单细胞甲基化测序

scChIP-seq:单细胞ChIP-seq

scGESTALT:结合CRISPR-cas9的谱系追踪弄方法

scHi-C-seq:测定染色体组装

sciATAC-seq:结合index转座酶的scATAC-seq

sci-CAR:利用index联合分析mRNA和染色质可及性谱

sci-MET:利用index分析单细胞甲基化水平

sci-RNA-seq:结合index的scRNA-seq

SCI-seq:单细胞组合标记测序,检测CNV

scM&T-seq:单细胞甲基化组和转录组测序,可研究未知的DNA甲基化与基因表达之间的关系

scNOMe- seq:核小体占位与甲基化组测序

scRRBS:单细胞限制性代表区域甲基化测序

scTHS- seq:单细胞转座体超敏性位点测序

seqFISH:内含子序贯荧光原位杂交,扩展观测到基因数量

snmC-seq:单核甲基胞嘧啶测序

SNS:单核测序

SPLiT-seq:丐版scRNA-seq

STARmap:原位单细胞测序

理想的实验流程应当全面洞悉细胞的所有方面,包括分子状态、空间构象、胞外环境互作的全部过程。尽管当下技术手段无法做到,但多模态技术与综合计算方法可以是我们离该目标越来越近。文章希望提出整合单细胞转录组学、基因组学、表观组学与蛋白组学的数据统一分析方法,重点在结合其他数据类型分析scRNA-seq数据,尤其是整合来自于同一细胞的不同类型数据。

文章分为四大块,首先探讨了多模态单细胞分析方法,其次研究了不同实验不同数据整合分析,然后讨论了单细胞空间测序数据整合分析方法,最后给出了整合分析方法的前景与必要性。

最初的单细胞分析方法主要关注细胞某状态下的某类分子水平。而现在更引人瞩目的是同时分析单细胞内多种分子以建立更全面的单细胞分子视图。通常这些方法是将scRNA-seq数据与其它分析手段的结合,目前主要有四种策略从单细胞中得到多模态数据:

严格来说这种方法算单模态。

一些scRNA-seq workflow采用流式分选细胞,随后进行scRNA-seq(MARS-seq/Smart-seq/2),这样可以同时获得单细胞与对应的荧光信号,将荧光所表示的蛋白质水平与转录组在同一细胞中关联( Ramsköld, D. et al., 2012; Jaitin, D. A. et al., 2014; Picelli, S. et al., 2013)。早期研究( Hayashi, T. et al., 2010)利用FACS结合半定量RT-PCR(作者称之为FBSC‐PCR),结合scRNA-seq,明确了细胞表面marker可以区分细胞类型与状态( Wilson, N. K. et al., 2015;该文结合了Smart-seq2),( Paul, F. et al., 2015;该文结合了MARS-seq)和鉴定稀有细胞的思路。 Paul, F. et al., 2015与 Nestorowa, S. et al., 2016利用该workflow研究发现了小鼠造血祖细胞由转录组定义不同细胞簇的免疫表型, Wilson, N. K. et al., 2015则分离了小鼠HSCs,鉴定细胞维持干性相关的表面marker。但是囿于荧光光谱的重叠现象,利用该法测到的每个细胞的参数范围有限。



针对荧光无法分选的部分,FACS显然是不合适的,尤其是需要同时测得单细胞基因组与胞内蛋白的scRNA-seq实验。此时需要物理分离或通过不同tag筛选出不同组分。

G&T-seq通过加入oligo(dT)特异性分离mRNA同时保留基因组DNA从而实现了基因组转录组平行测序( Macaulay, I. C. et al., 2015)DR-seq通过则通过加入barcode特异扩增cDNA序列实现基因组转录组平行测序( Dey, S. S. et al., 2015)。这使得单细胞基因表达水平与其对应基因型联系起来,深度揭示单细胞间DNA拷贝数变异与染色体重排对下游mRNA丰度的具体关联。这些方法适用于研究体细胞基因高度变异的肿瘤组织。



DNA甲基化与转录组水平结合研究是基于 Macaulay, I. C. et al., 2015的G&T-seq和 Smallwood, S. A. et al., 2014的scBS- seq技术发展的,同普通BSP一样,用亚硫酸氢钠处理DNA片段随后进行扩增,结合G&T-seq,可以分析同一细胞内的DNA甲基化模式和基因表达数据( Angermueller, C. et al., 2016)。由于DNA甲基化存在不稳定性和异质性,因此若要研究DNA甲基化与基因表达间的关系,则必须将表观基因组变异与细胞间的异质性区别开来。

通过DNA甲基化与转录组关联分析,为启动子甲基化与基因表达间的负相关性提供深层次的证据。利用barcode系统选择性标记基因组DNA与cDNA,结合index系统,可以对数千个单细胞进行染色质可及性与基因表达水平间的关联分析,同时鉴定出影响基因表达的顺式调控元件( Cao, J. et al., 2018)。

关于胞内蛋白与mRNA关联研究,有两种思路可供借鉴。其一( Darmanis, S. et al., 2016)是将FACS sort到的细胞裂解后分离裂解液,分别进行蛋白质与RNA定量。作者采用 PEA(邻近探针延伸分析)检测蛋白并用RT-qPCR定量,采用qRT-PCR定量mRNA。该法可以同时检测82个mRNA/75个蛋白;其二( Genshaft, A. S. et al.)是将FACS sort到的细胞在微流控芯片中同时进行逆转录和PEA而不分离裂解液。该法可以同时检测96个mRNA/38个蛋白。这两种方法检测的蛋白与mRNA数量与质量均有限。



这些技术的出现表明若将可以细胞信息转化为有序的barcode,我们就可以在分析单细胞转录组时将这些信息同时获取。这种策略不仅适用于分析细胞的自然状态,也适用于大规模基因扰动研究。目前有Perturb-Seq( Dixit, A. et al., 2016)和CRISPR-Seq( Adamson, B. et al., 2016; Datlinger, P. et al., 2017; Jaitin, D. A. et al., 2016),他们将scRNA-seq与CRISPR-cas9结合进行遗传筛选,使得研究正向遗传学的大规模基因扰动试验成为可能。具体原理是给单个基因扰动和受到影响的细胞添加barcode,通过scRNA-seq能够鉴定出这两者,从而推断CRISPR靶向基因和由此产生的单个细胞的转录谱间的关系。目前应用在基因调控网络( Dixit, A. et al., 2016)、未折叠蛋白反应( Adamson, B. et al., 2016)、免疫细胞分化发育( Datlinger, P. et al., 2017)和T细胞受体激活( Jaitin, D. A. et al., 2016),非编码区调控元件( Klann, T. S. et al., 2017)。还可以结合CRISPR-dcas9系统,扩展到转录调控、表观遗传调控领域中( Thakore, P. I. et al., 2016; Liu, X. S. et al., 2016; Hilton, I. B. et al., 2015; Konermann, S. et al., 2015; Gilbert, L. A. et al., 2017),18年发展了同时靶向和敲除基因的技术( Boettcher, M. et al., 2018)。

另一个应用是结合CRISPR-cas9的谱系追踪技术。单细胞谱系追踪是去年的大热方向之一,此处提到三种mRNA+lineage方法: scGESTALT、 ScarTrace、 LINNAEUS。这三种方法各有不同,但大体是利用CRISPR-cas9连续切割结合到基因组上的barcode,细胞会用NHEJ来应对这种损伤。但NHEJ容易出错,从而在DNA序列中产生随机突变,这些突变通过细胞分裂进行遗传,结合scRNAseq利用这些突变作为复合barcode来构建组织或器官发育谱系。

另一种略有不同的方法是 MEMOIR,它结合smFISH与CRISPR-cas9系统,可以同时检测细胞谱系与空间位置。

普通的scRNA-seq流程除了可以做转录本丰度外,还可以进行诸如体细胞突变、遗传变异、RNA isoform等分析。

关于体细胞突变目前已有研究( Lodato, M. A. et al., 2015),该文通过对人大脑的少量单细胞全基因组测序,分析了发生的细胞突变,构建了人大脑神经细胞谱系。作者发现突变大多发生在高转录活性相关位置,这表明可能可以通过scRNA-seq数据来分析神经细胞突变情况,根据转录状态重构神经细胞谱系。分析scRNA-seq数据中的拷贝数变异,可以研究癌症非整倍体与异质性等情况( Tirosh, I. et al., 2016; Fan, J. et al., 2018)。

单细胞分析也为理解DNA自然变异如何影响基因表达与细胞状态提供了新思路。有研究结合GWAS+scRNAseq,鉴定出了不同个体之间的eQTL( Kang, H. M. et al., 2018)。

多模态测序策略正在催生与之相匹配的数据分析方法。多模数据集可以检测到细胞间的细微差异,而单模数据很可能无法做到这一点。由于scRNAseq数据存在dropout,故而它更容易忽略细胞间的细微差别;但与来自同一细胞的其他数据互补分析可以改善这一问题。例如,很难通过scRNA-seq数据区分不同的T细胞亚群,但联合膜蛋白分析则可以显著提高亚群分辨率( Stoeckius, M. et al., 2017),同样,RNA+chromatin、RNA+methylation联合可能揭示单个细胞间的调控异质性,不再赘述。

单细胞多模态分析思路很可能受到bulk-seq多组学联合分析的启发( Meng, C. et al., 2016), Argelaguet开发了一种名为MOFA( multi- omics factor analysis)的方法,该方法在多组学bulk-seq数据中效果良好,同时测试了单细胞DNA甲基化数据与RNA数据联合处理情况,效果也可以。这暗示适用于bulk-seq的多组学数据处理方式可能也适用于单细胞多模态数据。鉴于单细胞数据规模远超bulk-seq,多视图机器学习不失为一种重要的补充手段( Colomé- Tatché, M.& Theis, F. J., 2018)。

单细胞多模态研究策略为解析细胞内不同组分间的关系提供了新方法。如CITE-seq和REAP-seq可以轻易鉴别出相关度较低的RNA-protein模块,表明此处存在活跃的转录后调节。还有一个很有意思的是通过测量剪接过的成熟RNA与未剪接RNA的相对丰度,可以建立RNA与蛋白的关联动态模型( La Manno, G. et al., 2018)。

还可以在不同类型数据间建立统计模型。前面提到的sci-CAR文章建立了染色质可及性与基因表达水平间的统计模型,通过染色质可及性数据估计细胞内基因表达水平( Cao, J. et al., 2018),另一组研究人员建立了gRNA与基因表达水平间的线性回归模型,用以识别细胞应答的前后关系,重构转录网络(Perturb-Seq( Dixit, A. et al., 2016))。通过这种手段可以研究目标物种复杂的调控网络。



前面主要讲了在同一测序实验同一批细胞进行的多模态数据整合,而不同测序实验数据整合分析才是亟需解决的关键问题。同bulk seq数据一样,处理批次效应是综合分析不同实验室、不同workflow产出数据的首要问题(SVA包( Leek, J. T. 2014))。然而目前bulk seq水平的处理方法无法处理单细胞数据(( Haghverdi, L, et al., 2018,作者用MNN处理数据,该法在 mnnpy中得到改进); Butler, A, et al,. 2018)。目前最新方法利用 CCA/ MNN可以识别出两个数据集间共有的部分,判定细胞间共有的生物学状态,然后以这些相同状态的细胞为基准消除批次效应。

此处作者介绍了他自己在Seurat V2中开发的方法( Satija, R, et al., 2015;),该法用 CCA鉴别出不同数据集间相同的细胞类型且可以避免出现由批次效应或常规PCA造成的假阳性细胞类型;接下来采用动态时间规整算法校正数据集间细胞密度差异。这两步骤可以将细胞投影到一个低维空间,具有相同生物学状态的细胞相互接近且消除了不同数据集带来的影响。

另一种方法即mnnCorrect,最早用于计算机领域图形识别。该法寻找不同数据集间最接近的细胞,将之判定为潜在的状态相同细胞,随后利用成对MNNs距离计算一个批次参数(batch vector),用以校正原始表达矩阵( Haghverdi, L., 2018)。

CCA/mnnCorrect在整合处理不同来源的scRNA-seq数据时表现良好。这将极大提升发现稀有细胞、微弱转录差异细胞及与之对应maker的能力( Haghverdi, L, et al,.2018; Butler, A,et al,. 2018)。这为建立一个统一的单细胞参考数据集提供了依据。在此基础上,scRNA-seq数据整合分析得到了快速发展( Hie, B. L, et al., 2018; Barkas, N. et al., 2018; Park, J.-E., 2018; Korsunsky, I. et al., 2018; Stuart, T. et al., 2018; Welch, J. et al., 2018)。这种多数据集整合分析的应用远不止用于校正批次效应这么单一。它可以在单细胞尺度上深入比较细胞间的状态,发现细胞对环境及基因扰动的特异性响应,对不同疾病及不同治疗下的患者的测序数据进行标准化。

scRNA-seq数据整合分析还可以扩展至跨物种分析。 Karaiskos,N比较了两种果蝇早期胚胎的空间基因表达模式,通过构建空间基因表达图谱,该研究系统比较了两个果蝇的同源基因表达谱,鉴定出了彼此间的进化波动。 Tosches比较了爬行动物与哺乳动物脑细胞间的相关性。 Baron分析了人与小鼠胰岛细胞scRNA-seq数据,鉴定出了二者间的保守亚群。 Alpert开发出了cellAlign,在一维水平上比对了人与小鼠的拟时轨迹,发现人胚胎合子激活要比小鼠晚,小鼠中比人活跃的基因皆与蛋白合成相关。跨物种分析未来是光明的,但对于多物种整合分析而言,精确鉴定物种间同源基因是多物种整合分析至关重要的一步。

以细胞分类信息的形式串联不同的scRNA-seq数据集,或者借鉴到自己实验中,是优于合并数据集然后de novo聚类这种方法的。且随着有参细胞图谱的开发,这种方式将更加寻常。目前已开发对应方法: scmap- cell& scmap- cluster,其中scmap-cell用乘积量化( product quantization)算法进行比对,而scmap-cluster则用于识别未知数据集中的cluster。

利用已有的注释数据集,目前开发的新方法采用奇异值分解、线性判别分析和支持向量机算法来对细胞进行分类。随着引用数据集的大小、范围与深度越来越高,监督聚类在解析细胞类型方面要比无监督聚类强得多。通过以上这些方法,可以更精确地识别并解析细胞亚群。

satija已有相关文章研究: Comprehensive Integration of Single-Cell Data

这一部分讲的是将scRNA-seq数据与其它不同来源和类型数据诸如甲基化、染色质结构等整合分析的方法。

将scRNA-seq数据与其它类型、不同来源的单细胞数据整合分析是无法提取到数据间的共同特征的,因为它们不是一个类型的数据,需要不同的分析方法。这点在基于基因组的数据(如染色质可及性与甲基化数据)与基于基因的数据(如基因与蛋白表达数据)间整合分析尤为明显。但如果这些数据来自于同一类细胞群,由于存在着共同的生物学状态,此时可以联立分析以发现不同数据集类型间的对应关系。

MATCHER是一种在一维水平上比较不同类型测序数据拟时轨迹的方法。简单来说就是比对不同类型测序数据的拟时轨迹,以确定这些数据集间的对应关系。这种方法可以识别不同数据集间的“等效细胞”而不需预先知道彼此间的对应关系。开发者用scM&T- seq( Angermueller, C. et al., 2016)和scRNA-seq数据做了验证,准确预测了DNA甲基化与基因表达之间的关系。

其他sc-seq数据不同于scRNA-seq数据一样可以借助Marker解析细胞类型,因此可以利用scRNA-seq解析出的细胞信息为其他sc-seq数据分析做参考。有研究( Lake, B. B. et al., 2018)对不同脑组织切片进行了单核RNAseq(snRNA-seq)与单细胞转座子超敏性位点测序(scTHS-seq),通过梯度推进算法利用单细胞基因表达谱指导了染色质可及性测序数据集的细胞分类:作者首先鉴别出snRNA-seq数据集与scTHS-seq数据集共有的细胞亚群,训练一个可以将基因表达与染色质可及性数据关联的模型;然后利用该模型去分类scTHS-seq中剩余未被分类的细胞。这种方法可以更细致地对大脑组织中的细胞进行分类。同样,可以整合scATAC-seq数据集来分析单细胞DNA甲基化或转座酶染色质可及性间的细胞分类。

目前正在开发的新方法有利用假定等价特征、或识别在所有类型数据中的假定相关共享特征来进行数据交叉模态分类。 Welch开发了一种集成非负矩阵分解(iNMF)的方法,名为LIGER,可以跨模态整合数据。他们对同一类型皮质细胞分别进行了亚硫酸盐测序(snmC- seq)与scRNA-seq并对其进行了分类。他们假设基因体甲基化与其表达水平负相关从而整合了不同模态测序数据进行细胞分类。在seurat v3.0中,作者也引入了假定等价特征或关联特征进行多模态整合数据细胞分类的方法。这些方法优点如上所述,即可以利用scRNA-seq的细胞分类信息来指导scATAC-seq数据细胞分类,鉴别出染色质可及性与DNA甲基化的细胞特异模块。

组织中细胞的空间结构常反映出细胞间的功能差异与细胞命运和谱系的差异。不同基因表达引导细胞向不同方向分化,不同细胞精确排列形成不同组织。关键是单细胞实验通常在分析前细胞已被解离,组织原位信息无法保留,scRNA-seq得到的表达谱不能完全反应细胞空间信息。具有相似基因表达谱的细胞可能存在于不同的空间位置中,故而细胞分离过程中空间信息的缺失是很多单细胞实验的主要缺点。结合高分辨率基因表达谱与空间表达图谱(spatial expression maps)将细胞空间坐标与基因表达谱联系起来,可以解决这一问题。有两类方法:计算模型或者RNA原位定量,可以同时收集到细胞空间坐标与基因表达值。


ChIP-seq综述

相比chip-chip,chip-seq提供了更高的分辨率,更少的noise以及更大的覆盖度。随着二代测序成本的快速下降,chip-seq将成为研究基因表达调控和表观遗传学必不可少的工具之一。


染色质状态的重要意义:染色质的状态一方面通过改变核小体的位置,DNA的包装紧密程度直接影响着转录的进行,另一方面独特的组蛋白修饰将促进或抑制转录因子与调控元件的结合。系统性地研究不同细胞的染色质状态对于理解生命发育过程至关重要。


最早的chip-chip技术,是基于微阵列杂交原理的,旨在提供全基因组范围的DNA-蛋白质相互作用。在一个高密度的芯片上种有大量覆盖基因组或指定区域的探针。


二代测序的发展在多个领域得到了广泛应用,包括全基因组测序、RNA-seq、结构变异体的发现、DNase I超敏位点图谱、从mRNA转录本中鉴定融合基因、新的小RNA的鉴定等。


ChIP-seq的应用研究最早发表在2007年,感兴趣的DNA片段被直接测序而不是杂交。研究中比较关键的一点是技术的分辨率相比chip-chip得到了提高,以至于能够识别组蛋白变体比如H2A.Z。另外研究中还发现了一类二价染色质状态(bivalent domains),也就是同一染色质区域同时具有激活和抑制性组蛋白标记。这类标记所标记的基因可能预示着它们暂时处于沉默但随时准备开启转录的“蓄势”状态,且这类基因很可能对于细胞谱系的发展、命运决定起着关键性作用。


对于探究DNA结合蛋白,ChIP-seq的实验就是为了富集与特异蛋白结合的DNA。首先通过原位甲醛交联DNA和蛋白,接着超声打断DNA成200-600bp的小片段,用抗体免疫沉淀感兴趣的DNA-蛋白复合物。最后解交联,对释放的DNA进行测序。


对于探究核小体位置或者组蛋白修饰,常常用到微球菌核酸酶(MNase)消化直接使染色质片段化,不用甲醛交联操作。实际上超声也可以用来片段化,不过MNase更被广泛应用,因为它可以更彻底地去除不需要的linker DNA使核小体mapping更精确。不过既然是酶切片段就不可避免地会有很多难以控制的因素,比如酶本身的序列结合偏好、酶切活性等。根据ChIP实验是否需要交联分成X-ChIP和N-ChIP,X表示crosslinking,N表示native。


接下来的DNA建库需要对片段化的DNA片段进行大小筛选(一般是150–300bp范围)。


Cost是很久以前的数据,现在的成本已大大降低。


首先chip-chip的应用范围就会受到限制,因为不太可能每个物种都专门制备高覆盖度探针(覆盖度本身就是问题),探针数太多,生产耗时耗力,尤其是对于哺乳动物基因组更是困难。


杂交过程本身就带有很多bias,杂交效率难以准确衡量,会受到GC含量、片段长度、浓度、序列二级结构等影响。且杂交测定的范围也很大程度上受到限制。


ChIP-seq在解决chip-chip上述问题的同时自身也有一些局限性:二代测序的准确性在reads的尾端大幅度降低(不过可以通过优良的生物信息学算法校正),片段富集以及测序过程都有GC倾向,正确地在测序仪上loading适量的DNA等(太少了信号弱,覆盖度低;太多了荧光信号彼此干扰,数据质量差)。


是ChIP成功与否的关键因素,也是产生较大batch effect的来源。抗体的交叉反应活性应当被严格地检查,包括应用RNAi实验敲低进行特异组蛋白修饰的酶做验证、质谱检测沉淀下来的蛋白片段等。


典型的chip-seq实验要求10的7次方数量级的细胞,并产生10-100ng的DNA。有些chip-seq通过对protocol进行优化,降低到可以用10的4次方至10的5次方个细胞用来研究全基因组图谱。因为建库需要PCR扩增步骤,所以PCRbias是不可避免的(因此PCR循环数不能太高,尽可能低)。具体需要多少细胞和多少起始量DNA其实还要看研究的具体的TF或组蛋白修饰的丰度怎样。


DNA片段化的bias:非均匀的片段化、染色质开放区更容易片段化造成。因此真正peaks calling需要对照,排除这类影响。


有三种常见的对照:


其中input DNA还是应用最为广泛的。


这个主要还是要根据样本本身的特点来确定,还可以检测一下saturation ponit


数据分析不是本文重点,简单提几个点:


鉴定peaks时,正链、负链的reads需要向彼此进行偏移,使得正负链的reads分布融合成一个中心区域的分布。(用的比较多的就是Poisson distribution)


有不同类型的peaks:sharp, broad and mixed,和检测的TF、组蛋白修饰类型本身的分布特点有关。对于不同类型的peaks,peak calling的算法会有区别。


peak caller的performance可以通过qPCR、计算peaks和邻近的motif之间的距离分布来简单评价。


下游分析不可缺少的当然是找motif,常用网站工具、软件包括:


motif之间的相关性可以反映潜在的基因调控网络。


peaks注释,相关性分析、聚类、GO分析也很常见。


ENCODE计划、modENCODE、Roadmap等表观遗传学项目都致力于大范围的基因组图谱的建立以及不同测序数据的整合。


参考文献:

ChIP–seq: advantages and challenges of a maturing technology

https://www.nature.com/articles/nrg2641

人工智能发展综述

近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。


人工智能(Artificial Intelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。


近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。


人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。


人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力:


自然语言处理(natural language processing)


知识表示(knowledge representation)


自动推理(automated reasoning)


机器学习(machine learning)


计算机视觉(computer vision)


机器人学(robotics)


这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(Alan Turing)在1950年还提出了一种图灵测试(Turing Test),旨在为计算机的智能性提供一个令人满意的可操作性定义。


关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。


图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。


在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(Eugene Goostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。


在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。


①1943-1955年人工智能的孕育期


人工智能的最早工作是Warren McCulloch和Walter Pitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。


②1956年人工智能的诞生


1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。


③1952-1969年人工智能的期望期


此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。


后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。


1958年,麦卡锡发表了“Program with Common Sense”的论文,文中他描述了“Advice Taker”,这个假想的程序可以被看作第一个人工智能的系统。


④1966-1973人工智能发展的困难期


这个时期,在人工智能发展时主要遇到了几个大的困难。


第一种困难来源于大多数早期程序对其主题一无所知;


第二种困难是人工智能试图求解的许多问题的难解性。


第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。


⑤1980年人工智能成为产业


此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。


⑥1986年以后


1986年,神经网络回归。


1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。


1995年,智能Agent出现。


2001年,大数据成为可用性。


在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手Garry Kasparov而震惊了世界。


在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名靠前的柯洁。


2017年1月6日,百度的人工智能机器人“小度”在比较强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“比较强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在比较强大脑的收官之战中战胜了人类代表队的黄政与Alex。


2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量2.5亿,语音识别率达97%。


“深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。


百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。


语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。


工业4.0是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。


工业4.0已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业4.0”对于未来中德经济发展具有重大意义。


工业4.0项目主要分为三大主题:智能工厂、智能生产、智能物流。


它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。


但是随着AI的发展,工业4.0的推进速度将会大大推快。


人工智能可以渗透到各行各业,领域很多,例如:


①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。


②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。


③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。


④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。


⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。


⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。


⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。


⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。


专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。


知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。


机器学习(Machine Learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。


机器学习领域的研究工作主要围绕以下三个方面进行:


(1)面向任务的研究


研究和分析改进一组预定任务的执行性能的学习系统。


(2)认知模型


研究人类学习过程并进行计算机模拟。


(3)理论分析


从理论上探索各种可能的学习方法和独立于应用领域的算法


机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。


遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。


Deep Learning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。


他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I=>S1=>S2=>…..=>Sn


=> O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。Deep Learning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。对于深度学习其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。


深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络;


LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM;


生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。


随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。


[1] Russell,S.J.Norvig,P.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(2016.12重印)


[2]库兹韦尔,人工智能的未来杭州:浙江人民出版社,2016.3


[3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108.


[4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126.


[5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70.


[6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264.


[7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152.


[8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.


[9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342.


[10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9.


[11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18


[12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015.


[13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26.


[14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336.


[15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214.


[16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112.


[17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13.


[18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200.


[19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59.


[20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942


[21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210.


[22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010

遗传学教学的几点体会论文

遗传学教学的几点体会论文

在学习、工作生活中,大家都接触过论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么你有了解过论文吗?下面是我为大家整理的遗传学教学的几点体会论文,希望对大家有所帮助。


遗传学教学的几点体会论文篇1

生命科学中的遗传学,是与现代生物科学中多门课程有关联的专业基础课,同时又是一门方法技术精密的实验性课程,涉及生物学、微生物学等问题,同时又有细胞学、生物化学、发育学、生物统计学等问题,显微技术也是遗传学实验课教学的必需内容之一。在目前的新兴专业,例如生物技术、生物科学中,主要面临着教学任务重、课时少的问题。随着高校教育教学改革的进一步深入和素质教育的推进,课堂理论教学学时数正在不断压缩,已由最初的120学时减少到目前的54学时,甚至是48学时。所以学生普遍感觉到遗传学课程的教学内容多、时间紧、跨度大、难度大,是较难掌握的一门课程。如何提高其教学效果,值得探讨。

一、要讲好绪论课

绪论是第一节课,是教师与学生的第一次接触,教师的水平、性格、态度、语言、情感、衣着等都会给学生留下深刻的印象,这将有助于建立良好的师生关系,取得良好的教学效果。在绪论课上,可精选一些典型的遗传学学史事例,以及一些对遗传学的建立与发展作出过重要贡献的历史人物事迹,同时结合遗传学在当前医学、生物技术等领域的应用中所起的作用,展示其重要性,让学生在了解遗传学的建立与发展过程的培养其学习兴趣。

二、采用多媒体教学,展示更多的研究信息

照片、视听媒体具有形象、动态、生动、直观的优势,学生对它有新鲜感。就心理而言,新鲜感会因时间推移而逐渐消退,其学习态度和行为也会随之发生微妙的变化;就教师而言,单纯利用视听媒体的优势向学生灌输知识信息,或依托媒体照本宣科,势必成为另一种形式的“满堂灌”;追求“直观”也不能限制学生想象、思考的空间而迟滞抽象思维的发展。因此在利用多媒体教学的过程中,应当把启发式教学的思想预先注入媒体的图像、视听造型及媒体的组合之中,确定启发式精讲与媒体的启发式展示相结合的教学策略。

三、对于不同的章节,应采取不同的授课方式

例如,对于遗传的三大定律、染色体数目及结构变异等不需要死记硬背的内容,可以通过鼓励学生多做习题或者上习题课的方法来掌握。在布置习题的过程中,应有针对性地选择一些典型的习题,而不是采取题海战术的方法。在批改学生作业的过程中,要发现学生的问题所在,通过习题的解析,使学生更好地掌握所学内容。

四、更新教学内容,激发学习兴趣

遗传学是一门古老的又不断发展的学科。所以在教学的过程中应不断注入新的内容。绝大部分大学生,在中学阶段都学习过一些遗传学的内容,例如孟德尔遗传、连锁遗传等,如果老师仍然照本宣科、娓娓道来的话,学生很可能会失去兴趣,觉得厌烦。许多的诺贝尔生理医学奖都与遗传学的发展有着紧密的关系,可以通过给学生讲解这些科研成果的方式,激起学生学习遗传学的兴趣。学习兴趣是构成学习动机中最现实、最活跃的成分,对于提高学习效果、智力发展、创新能力培养及教育质量的全面提高有着巨大的作用。可以采取让学生自己讲授这些章节的方法进行教学,在学生备课和准备幻灯的过程中,将会对这些内容进行很好的复习。教师再根据学生在讲课过程中所出现的问题,有针对性、有重点地予以纠正。而对于新发展起来的基因组学、后基因组学、蛋白质组学、人类遗传疾病的遗传控制等内容,则比较容易引起学生学习的兴趣,可以结合分子生物学实验室的实验内容,更形象、更生动地为学生讲解。

五、精心准备遗传学的实验课

遗传学在农业、医学、环境污染治理、生物多样性的保护等方面具有重要作用,而实验教学是不可分割的重要部分。实验教学在育人方面有其独特作用,不仅可以授人以知识和技术,培养学生的动手能力与分析问题、解决问题的能力,而且能够影响人的世界观、正确的思维方法和严谨的工作作风。实验室是实验教学的主要场所,而实验教学又是培养有创新思维、创新能力人才的最佳途径。在遗传学课程的安排中,实验课占了1/3-1/4。实验课不仅能激发学生的求知欲,而且能加深学生对所学理论知识的理解,锻炼学生的实验操作技能,有助于提高学生观察、思维、分析和创新等方面的能力。

随着遗传学的发展,仅仅停留在以果蝇为材料的实验方法上,远远无法满足学生的需要。可以结合生物科学目前发展的趋势,为学生开展一些分子生物学的实验,例如DNA的提取、基因克隆、DNA测序、转基因等等,让学生对当前的实验技术有所了解。这不仅能够激起学生学习的兴趣,还有利于培养学生进一步在生物科学领域深造的欲望。

六、提高自己的语言表达水平

有人说教师的语言如钥匙,能打开学生心灵的窗户。好的教师语言是教师从事教育、教学工作必备的条件。教师语言水平的高低,直接影响到教学效果和教学质量的优劣。作为一个合格的人民教师,必须不断地提高自己的语言表达水平,尽量使自己的语言幽默诙谐。苏联作家斯维洛夫说:“教育家最主要的也是第一位的助手是幽默。”一个概念,讲授时有无幽默感,表达效果就不大一样。幽默能引起学生的兴趣,加深学生的理解和记忆。趣味性一般指教学语言生动形象、富于情趣。教学语言的趣味性也是教育教学成败的重要条件之一。

一个优秀的教师,不仅要有丰富系统的科学文化知识,懂得教育教学规律,还应该不断努力提高自己的教学语言修养,这样才能更好地完成教育教学任务。

遗传学教学的几点体会论文篇2

遗传学作为生命科学本科阶段所要学习的一门基础的专业必修课程,遗传学课程建设情况、教学水平和研究水平,是衡量生物学相关学科、专业整体水平的一个重要标准。加强遗传学课程的建设与教育教学创新,是高校学科建设的重要内容。本文总结了我校在遗传学研究性教学示范课程建设方面的一些探索性工作,旨在与广大同行进行交流与探讨。

由于现代生物学的飞速发展,遗传学尤其是分子遗传学部分的内容更新很快,单纯依靠教科书乃至书本参考书,都会跟不上知识更新的速度;另外,遗传学的研究领域宽广,与众多学科交叉融合,形成了许多分支学科。继续采用老师讲学生被动学的模式进行遗传学的教学已不能满足遗传学飞速发展的需要,在遗传学的教学中开展研究性教学势在必行。

研究性课程以其独特的创新品格和实践魅力,深受课程研制者和实践者所关注,成为二期课改的亮点,但同时它又是当前课改的难点。为搞好我校遗传学课程的研究性教学,我们进行了如下的探索:

一、对课程体系和教学内容进行整合和优化

遗传学是我校生命科学学院的主干课程,包括《遗传学》和《遗传学实验》两门独立课程,《遗传学》的教学课时数是54学时(3个学分),《遗传学实验》的课时是36学时(1个学分)。但是遗传学的教学内容几乎涉及到了遗传学科的方方面面,这就造成了知识容量大而课时少的矛盾;随着学校教育体制的改革和办学方向的战略性调整,生命科学院由原来单纯的师范专业发展到现在的生物教育专业、生物技术专业、生物工程专业和海洋专业,同时还有国家理科基地;另外,遗传学的授课对象除了生命科学院的各专业学生外,还有中北学院和强化部的学生。由于各专业的培养目标有所侧重,学生的知识结构和专业基础差异较大。遗传学的.教学工作面临着许多困难与挑战。

根据遗传学的学科特色和遗传学教学的实际需要,我们对国内外目前比较普遍使用的遗传学教材的内容体系进行了系统的比较和研究,对本校生物专业已修完遗传学课程的本科生和研究生进行了访谈,对中学的新课改,以及中学的生物学教学要求进行了调研,听取他们对高校遗传学教材体系构建和遗传学教学过程的建议和要求。在此基础上,我们编写了《遗传学》和《遗传学实验》两部教材,由科学出版社于2013年6月出版发行,这两部教材都被遴选为南京师范大学重点教材。

新编教材在保持现有教材风格和优点的基础上,通过全体编著人员的共同努力,形成了如下特色:

(一)凸显遗传学的学科特色,凡是在其他相关教材中应该阐述清楚的内容均不列入本教材,例如,细胞的结构、细胞分裂、DNA的结构、DNA的复制、转录和翻译的过程等。

(二)以基因为主线,按照基因概念的形成和发展的顺序,系统介绍基因的结构、功能、定位、重组、突变、基因工程和调控等核心内容。

(三)连锁与交换是整个遗传学的灵魂。本教材以最大的篇幅对连锁与交换的概念、连锁与交换规律、连锁与交换的证据、连锁与交换的意义、连锁遗传分析、连锁遗传图的绘制、真核生物的连锁与交换、细菌和噬菌体的连锁与交换、真菌的连锁与交换等内容进行了比较全面和系统的阐述。

(四)基因定位是研究基因功能和进行遗传操作的关键,本教材将其独立成章,对各种遗传标记和基因定位的常规技术和方法进行归纳和介绍,不仅使学生明确相关概念,同时了解各种基因定位方法。

(五)孟德尔定律是遗传学科的基石,但是由于当时理论和技术的局限,孟德尔的假说也存在许多缺陷,为了帮助学生系统学习孟德尔的遗传规律,同时将细胞遗传学与现代遗传学密切地联系在一起,在介绍孟德尔遗传规律之后,进一步对孟德尔的遗传规律进行了补充和发展。

(六)细胞遗传和分子遗传是遗传学科的两条主线,本教材对这两部分内容都进行了扩充。在细胞遗传学部分加入了“核型与核型分析”的内容,在分子遗传学部分加入了“基因组与基因组学”、“蛋白质组与蛋白质组学”和“生物信息学”等内容。

(七)我们学习和掌握遗传学知识的目的,除了开发和利用基因资源为人类服务之外,还应该加强遗传保护,减缓重要遗传资源衰退或灭绝的速度,保持遗传多样性。在本教材中引入“保护遗传学”这一章,增强学生保护遗传资源的意识。

(八)《遗传学实验》教材的内容选择和实验安排紧扣《遗传学》教材的知识体系,实验内容涵盖细胞遗传、分子遗传、群体遗传、数量遗传、人类遗传、动物遗传、植物遗传、微生物遗传等不同领域,各个实验的取材方便,操作简洁,涉及的内容与日常生活息息相关。

二、将创造性和自主性学习的要求贯穿于整个教学过程中

在研究性教学中,教师不仅要传授知识,而且要遵循认知规律,以学生为中心,设计教学过程、提供教学资源、提供学习建议,对整个学习过程进行控制,关键环节上对学生进行启发、激励、引导和指导,并及时对学习效果进行评价,使学生从理解和接受式的被动学习转变为探索和研究式的自主学习。

为了激发学生学习热情和对遗传学科的学习兴趣,在每章开始之前都向学生提出一些前瞻性问题,让学生借助网络和学校数据资源进行预习,在课堂教学中对一些热点问题进行随堂讨论,在每章结束之后布置一些重点问题让学生进行探究,使学生的学习不再是死记硬背,而是主动地去进行探索。

三、精选实验内容,激发学生的学习兴趣和研究热情

遗传实验课程历史悠久,随着科技的进步和科学的发展,实验内容在不断地扩充、更新与深化,但是,在遗传史上的一些经典实验仍然需要保留,因为这些实验的原理和设计精髓对现代生物学研究仍然有着不可替代的科学意义。然而,遗传学实验课的学时数又很少,如何解决这个矛盾?在遗传学实验课程的教学中,我们主要进行了如下的探索:

(一)精选经典实验,培养创新能力

像果蝇的杂交这样的传统实验,它的实验原理和设计精髓对现代生物学研究仍然有着不可替代的科学意义,因此仍然需要保留,但是我们绝对不能像以前那样,让学生一步步地按照实验教材的步骤去操作、去验证,学生能够发挥创造性的机会很小,而且有些学生可能在中学就做过了这样的实验。为了克服传统实验的不足,培养学生的探究意识和创新能力,我们只给学生提供果蝇品系和研究目标,让学生自己去设计实验方案,在规定的时间内自己确定研究进程,最终将整个研究过程形成一个综合报告。经过几届学生的实践,我们发现效果非常好,学生可以选择不同的杂交方式、选择不同的基因去进行分析,既验证了相关的遗传理论,又发挥了自己的创造性。

(二)注重综合性实验,强化操作能力

综合性实验教学是指实验内容涉及本课程的综合知识或与本课程相关的其它课程多个知识点的实验,要求学生综合已学的知识来设计和操作实验。主要目标是培养学生的综合分析能力、实验动手能力、数据处理能力、查阅资料能力以及运用多学科知识解决问题的能力,学会应用不同的方法和技术来完成预定的实验内容。在研究性遗传学实验示范课程的教学中,我们设计了多个综合性实验,例如,“人类基因组DNA的检测与分析”实验,推荐学生用自己的指甲、口腔粘膜和毛囊作为材料,提取自己的基因组DNA,进行琼脂糖凝胶电泳,应用图像分析软件对照片上的图形进行测量,构建DNA的片段大小回归方程,并且根据回归方程计算出各未知DNA的相对含量,比较和评价各种材料的实验结果。因为是对自己的DNA进行分析,所以学生对实验的热情都很高。

四、培养学生科技文献获取和利用能力

遗传学的内容更新很快,单纯靠教科书和参考书,跟不上知识更新的速度,因此阅读科技文献成为获取最新学术进展的最佳方法。另外,每个学生将来走向工作岗位后,都可能从事一定的科研或教学活动,利用科技文献的机会是在所难免的。所以获取和利用科技文献的能力应在大学阶段得以充分培养。我们主要采取了如下措施:

(一)向学生介绍国内外的一些与遗传学相关的重要杂志名录、科技文献的检索方法、网络数据库及其使用方法等;

(二)要求学生完成1篇课程论文。教师只提出论文的写作和格式要求,但不拟定具体的题目,由学生根据自己的兴趣或最关注的问题自定选题,然后查阅文献,在课程结束之前,每个学生都必修提交1篇与遗传学相关的综述文章,并按照一定比例计入最终成绩。

(三)鼓励学生参与遗传学任课教师的课题,在老师指导下,积极申报江苏省和南京师范大学的大学生实践创新项目。在科研训练方面,已经取得了理想的成果,每位遗传学任课教师每年都指导由学生自动组成的课题组,成功申请了江苏省和南京师范大学的大学生实践创新项目,而且取得了很好的研究成果,已有多个课题组在国内权威期刊上发表了相关的研究论文。

通过遗传学各任课教师的共同努力,我校的遗传学研究性示范教学工作取得了明显的成效,初步达到了创造性教与学的目的,教学质量有了进一步的提高,为进一步做好我校的遗传学教学工作、不断提高我校的遗传学教学质量奠定了良好基础。我校的遗传学研究性示范教学实践表明,高校的课程教学只有通过改革,紧跟社会和科学发展步伐,才能充满生机活力,获得教学双赢。

;

关于遗传学综述 和遗传学教学的几点体会论文的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

相关论文推荐